Glutamate is the transmitter for N2v retraction phase interneurons of the Lymnaea feeding system.
نویسندگان
چکیده
Electrophysiological and pharmacological methods were used to examine the role of glutamate in mediating the excitatory and inhibitory responses produced by the N2v rasp phase neurons on postsynaptic cells of the Lymnaea feeding network. The N2v --> B3 motor neuron excitatory synaptic response could be mimicked by focal or bath application of -glutamate at concentrations of >/=10(-3) M. Quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were potent agonists for the B3 excitatory glutamate receptor (10(-3) M), whereas kainate only produced very weak responses at the same concentration. This suggested that non-N-methyl--aspartate (NMDA), AMPA/quisqualate receptors were present on the B3 cell. The specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M) blocked 85% of the excitatory effects on the B3 cell produced by focal application of glutamate (10(-3) M), confirming the presence of non-NMDA receptors. CNQX also blocked the major part of the excitatory postsynaptic potentials on the B3 cell produced by spontaneous or current-evoked bursts of spikes in the N2v cell. As with focal application of glutamate, a small delayed component remained that was CNQX insensitive. This provided direct evidence that glutamate acting via receptors of the non-NMDA, AMPA/quisqualate type were responsible for mediating the main N2v --> B3 cell excitatory response. NMDA at 10(-2) M also excited the B3 cell, but the effects were much more variable in size and absent in one-third of the 25 B3 cells tested. NMDA effects on B3 cells were not enhanced by bath application of glycine at 10(-4) M or reduction of Mg2+ concentration in the saline to zero, suggesting the absence of typical NMDA receptors. The variability of the B3 cell responses to NMDA suggested these receptors were unlikely to be the main receptor type involved with N2v --> B3 excitation. Quisqualate and AMPA at 10(-3) M also mimicked N2v inhibitory effects on the B7 and B8 feeding motor neurons and the modulatory slow oscillator (SO) interneuron, providing further evidence for the role of AMPA/quisqualate receptors. Similar effects were seen with glutamate at the same concentration. However, CNQX could not block either glutamate or N2v inhibitory postsynaptic responses on the B7, B8, or SO cells, suggesting a different glutamate receptor subtype for inhibitory responses compared with those responsible for N2v --> B3 excitation. We conclude that glutamate is a strong candidate transmitter for the N2v cells and that AMPA/quisquate receptors of different subtypes are likely to be responsible for the excitatory and inhibitory postsynaptic responses.
منابع مشابه
Glutamatergic N2v cells are central pattern generator interneurons of the lymnaea feeding system: new model for rhythm generation.
We aimed to show that the paired N2v (N2 ventral) plateauing cells of the buccal ganglia are important central pattern generator (CPG) interneurons of the Lymnaea feeding system. N2v plateauing is phase-locked to the rest of the CPG network in a slow oscillator (SO)-driven fictive feeding rhythm. The phase of the rhythm is reset by artificially evoked N2v bursts, a characteristic of CPG neurons...
متن کاملBehavioral function of glutamatergic interneurons in the feeding system of Lymnaea: plateauing properties and synaptic connections with motor neurons.
Intracellular recording techniques were used to examine the electrical properties and behavioral function of a novel type of retraction phase interneuron, the N2 ventral (N2v) cells in the feeding network of the snail Lymnaea. The N2vs were compared with the previously identified N2 cells that now are renamed the N2 dorsal (N2d) cells. The N2vs are a bilaterally symmetrical pair of electrotonic...
متن کاملActivation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea.
We describe the role of the octopamine-containing OC interneurons in the buccal feeding system of Lymnaea stagnalis. OC neurons are swallowing phase interneurons receiving inhibitory inputs in the N1 and N2 phases, and excitatory inputs in the N3 phase of fictive feeding. Although the OC neurons do not always fire during feeding, the feeding rate is significantly (P < 0.001) higher when both SO...
متن کاملDynamic control of a central pattern generator circuit: a computational model of the snail feeding network.
Central pattern generators (CPGs) are networks underlying rhythmic motor behaviours and they are dynamically regulated by neuronal elements that are extrinsic or intrinsic to the rhythmogenic circuit. In the feeding system of the pond snail, Lymnaea stagnalis, the extrinsic slow oscillator (SO) interneuron controls the frequency of the feeding rhythm and the N3t (tonic) has a dual role; it is a...
متن کاملEndogenous and network properties of Lymnaea feeding central pattern generator interneurons.
Understanding central pattern generator (CPG) circuits requires a detailed knowledge of the intrinsic cellular properties of the constituent neurons. These properties are poorly understood in most CPGs because of the complexity resulting from interactions with other neurons of the circuit. This is also the case in the feeding network of the snail, Lymnaea, one of the best-characterized CPG netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 6 شماره
صفحات -
تاریخ انتشار 1997